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INTRODUCTION

For more than twenty years, the most
common approach to parameterize the effect of
environmental factors on stomatal behaviour has
been the so-called Jarvis type models (Jarvis,
1976), in which stomatal resistance is expressed
as a minimum resistance multiplied by a series of
independent stress functions combined in a
multiplicative way (each function representing the
influence of one factor). Recently, the response
of stomata to humidity has been reinterpreted in
a different way: It seems that the correlation
between stomatal resistance and atmospheric
humidity is purely empirical and that the
mechanism underneath is based on the water-
loss rate of the leaf (Mott and Parkhurst, 1991).
Stomata appear to respond to the rate of
transpiration rather to air humidity per se.
Monteith (1995a,b) showed that the leaf stomatal
conductance can be interpreted as a linear
decreasing function of transpiration with two
empirical parameters: a maximum conductance
and a maximum rate of transpiration. He
suggested also that this relationship between
stomatal conductance and transpiration rate
could be up-scaled from leaf to canopy, in the
same way as the Jarvis model. The aim of this
paper is to assess and discuss this new
formulation of stomatal behaviour proposed by
Monteith and to interpret the parameters at
canopy scale.

MONTEITH’S FORMULATION

The Penman-Monteith single-source
model (Monteith, 1981) gives the flux of
evaporation from a fully-covering canopy in the
form of the following equation
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where A=Rn-G is the available energy (with Rn

the net radiation and G the soil heat flux),
D=q*(θ)-q is the potential saturation deficit of the
air (with θ the air temperature and q the specific
humidity of the air), ε is the dimensionless slope
of the saturation specific humidity q* and varies
with air temperature, ra is the bulk aerodynamic

resistance to heat and water vapour transfer
through the surface layer, rs is the bulk surface
resistance to water vapour transfer, ρ is the air
density and λ is the latent heat of vaporisation.
Defining potential evaporation from a given
vegetation canopy (denoted by Ep) as the
evaporation from this canopy when all the
exchange surfaces are saturated, i.e., when rs=0
in Eq.(1), evaporation can also be expressed as
a function of Ep as
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According to Monteith (1995a,b) the canopy
surface resistance reads as

r r E E Es sn x x/ / ( )= −                                      (3)

In this analysis soil evaporation is assumed to be
negligible, which means that transpiration rate in
Eq.(3) is strictly the same as canopy evaporation
in Eq.(1) or (2). Consequently, combining Eq.(2),
expressing the thermodynamic dependence of E
on rs, with Eq.(3), expressing the physiological
dependence of E on rs, leads to a quadratic
expression for rs , whose appropriate root is
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When the quadratic equation obtained by
combining Eq.(2) with Eq.(3) is solved in E
instead of rs, the appropriate root gives (Monteith,
1995b)
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The limit rate of transpiration Ex is a notional
maximum rate of water supply, the precise
significance of which is not known. However, a
simple physical interpretation can be inferred



from Eq.(5). When atmospheric demand
becomes very large, i.e., when Ep tends to infinity
(all other parameters being kept constant), it can
be shown from Eq.(5) that evaporation tends to
Ex. So, Ex can be interpreted as the limit value of
actual evaporation when the atmospheric
demand tends to infinity. In other words, it is a
notional maximum amount of water available in
the soil for extraction by the canopy per unit time.
Little is known also on the significance and
possible values of rsn.

THE  JARVIS TYPE REPRESENTATION

The Jarvis type models (Jarvis, 1976;
Stewart, 1988) describe the response of stomata
to environmental factors (at leaf scale as well as
at canopy scale) in the form of a minimal
resistance multiplied by the product of
independent stress functions interacting without
synergy

r r F (S)F (T)F (D)F ( )s s l= min 1 2 3 4 Ψ                        (6)

Here, rsmin is the minimum stomatal resistance
observed in optimal conditions, i.e., if none of the
controlling variables is limiting (it is taken to be
equal to 40 s m-1 in our analysis). S is the
incoming solar radiation, T is the air temperature,
D is the water vapour saturation deficit, Ψl is the
leaf water potential, which at the scale of a stand
of vegetation is often replaced by the bulk soil
water potential or the soil water content averaged
over the root zone. Each function (Fi) varies from
unity to infinity.

The influence of solar radiation can be
expressed in terms of a hyperbolic function of the
form (Stewart, 1988)

F S c S dS1( ) ( ) / ( )= +                                        (7)

where d is obtained from d=1+c/1000. When S is
expressed in W m-2, Stewart and Gay (1989)
derived a mean value of about 400 for c in the
case of the Konsa Prairie in Kansas (FIFE data).
The response of stomata to temperature is not
essential and will be skipped in this analysis. For
the dependence on saturation deficit F3(D), the
common form generally adopted is a linear
decrease of stomatal conductance with D (Jarvis,
1976; Stewart, 1988) leading to

F D D with D3
11 0 1( ) ( ) /= − < <−α α          (8)

For the Konza Prairie in Kansas (FIFE data),
Stewart and Gay (1989) give a mean value of
about 24 to the empirical coefficient α, with D
expressed in kg kg-1. However, Lynn and Carlson
(1990, p.17) question the real effect of air
humidity on stomatal resistance. They think the

role played by the saturation deficit is indirect. An
increase of D damps the leaf water potential
which, in turn, is responsible for an increase of
stomatal resistance. As to the dependence of
stomatal resistance on leaf water potential it can
be expressed in different ways (Jarvis, 1976;
Choudhury and Idso, 1985). In their IAGL (Institut
d’Astronomie et de Géophysique Georges
Lemaître) land surface model, de Ridder and
Schayes (1997) employ an hyperbolic
dependence of the form

F l l cc4
11( ) ( / )Ψ Ψ Ψ= − −                                 (9)

where Ψcc represents the value of leaf water
potential at which a complete stomatal closure
occurs (Ψcc ≈-25 bars).

MATCHING THE TWO FORMULATIONS

In this section we show how the Jarvis
model can be transformed and put in the same
form as the Monteith model.

The bulk leaf water potential Ψl is
related to the bulk soil water potential Ψs by
means of the Ohm’s law type equation originally
proposed by van den Honert (1948)

Ψ Ψl s spr E= − λ                                             (10)

where rsp is the total soil-plant resistance and E is
the water flux through the soil-plant system,
assumed here to be equal to the total
evaporation rate. The significance and value of
rsp have been extensively discussed by Lynn and
Carlson (1990). rsp is the sum of a soil-root
interface resistance (rsr) and of a root-stem
resistance (rrs): rsp=rsr+rrs. The plant component of
rsp (rrs) remains relatively constant over a large
range of leaf water potential: a typical value is
0.047 (Ψ being expressed in bar and λE in W m-

2). The soil component of rsp (rsr) expresses the
resistance of the flow of liquid water from the soil
to the roots. The formulation proposed by
Choudhury and Idso (1985) is

r k Z Ksr ef s= 0 0013 1. / ( )                                  (11)

where 0.0013 (m2) is the ratio of a parameter
relating root distance and geometry to the
reciprocal of the effective rooting depth; k1 is a
conversion factor equal to 0.4 10-10 when rsr is
expressed in bar (Wm-2)-1; Zef is the effective
rooting depth (m), assumed to be 1 m in our
analysis; Ks is the soil hydraulic conductivity (m s-

1), which is linked to the soil water potential by
Ks=Ksat(Ψsat/Ψs)

3/b+2 (Campbell, 1974), where Ksat

and Ψsat are respectively the conductivity and the
water potential at field saturation.



Taking into account Eqs.(9) and (10),
Eq.(6) can be rewritten as
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with r13=rsminF1(S)F3(D). Eq.(12) is an expression
similar and functionally equivalent to Eq.(5),
when rewritten as rs=rsn/(1-E/Ex). Matching term
by term these two equations leads to

r r r Fsn s cc s= − =13 13 41/ ( / ) ( )Ψ Ψ Ψ                  (13)

and

λE rx s cc sp= −( ) /Ψ Ψ                                    (14)

Consequently, it appears that Monteith’s
parameterization of canopy stomatal resistance is
not different from the Jarvis approach since the
former can be inferred from the latter. The two
parameters (rsn and Ex) of Monteith’s relationship
can be interpreted in terms of the parameters and
functions making up the Jarvis model and their
physical significance appears now clearly. rsn

represents the canopy stomatal resistance when
the leaf water potential is equal to the soil water
potential (Ψl=Ψs), i.e., at zero transpiration
(conditions experimentally encountered at pre-
dawn). Ex represents the flux of water extracted
from the soil when the leaf water potential is
equal to the limit value Ψcc (i.e. its lowest possible
value according to the parameterization used for
F4). It is the maximum flux of water the canopy
can potentially extract from the soil.

The issue that arises now is the
dependence of the canopy minimal stomatal
resistance rsn upon water vapour saturation
deficit. To Monteith’s mind, rsn cannot depend
upon saturation deficit, since in Eq.(3) the
dependence of canopy resistance upon
transpiration theoretically replaces the
dependence upon saturation deficit. However,
the matching of the two models leads to this
apparent double dependence (rsn is a function of
r13 and then of F3(D), as shown by Eq.(13)). It is
possible to keep only one dependence (that upon
transpiration) by assuming with Lynn and Carlson
(1990) that stomata do not respond directly to D
(but indirectly through Ψl) and by putting then
F3(D)=1. From a pragmatic viewpoint this idea
seems recommendable. In effect, this alternative
leads to a sound and simple interpretation of the
action of saturation deficit on stomatal aperture:
When D increases, transpiration increases and
consequently leaf water potential decreases
according to Eq.(10) (assuming Ψs and rsp to
remain constant), which provokes a stronger
stomatal closure.
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Fig.1- Maximum canopy evaporation λEx (given
by Eq.(14)) versus soil water potential Ψs for
different values of leaf water potential Ψcc

corresponding to a complete stomatal closure
(defined by Eq. (9)).
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Fig.2- Maximum canopy evaporation λEx versus
soil water potential Ψs for different values of the
root-stem resistance rrs.

NUMERICAL RESULTS

For a particular type of soil,
characterised by fixed values of Ksat, Ψsat and b,
and a given vegetation, characterised by fixed
values of Ψcc, rrs and Zef , the soil-plant resistance
rsp and then the maximum canopy transpiration
λEx depend only upon the soil water potential Ψs.
The values of the parameters used in the
simulations are those given in the text. For the
soil we took: Ksat=6.3 10-6 m s-1, Ψsat=-0.03 bar
and b=7.1, which correspond to a sandy clay
loam. Fig.(1) shows the variation of λEx as a
function of Ψs for different values of the limit leaf
water potential Ψcc. λEx is an increasing function
of Ψs : When Ψs passes from 0 to -20 bars, λEx is
divided by 10, passing from 500 to 50 W m-2

(forΨcc=-25 bars); and for a given value of Ψs,
λEx increases when the limit leaf water potential
Ψcc decreases. λEx is also a function of root-stem
resistance as illustrated in Fig.(2). Fig.(3) gives
the variation of the minimum stomatal resistance
rsn as a function of solar radiation S for different
values of soil water potential. In the expression of
rsn given by Eq.(13) it is assumed that F3(D)=1,
which means that r13=r1=rsminF1(S). In this way,



the minimum canopy resistance rsn depends only
upon solar radiation through F1(S) and soil water
potential Ψs. rsn appears to be a decreasing
function of both solar radiation and soil water
potential.
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Fig.3 - Minimum canopy resistance rsn (given by
Eq.(13)) versus solar radiation S for different
values of the soil water potential Ψs (bar).

CONCLUSION

The formulation of canopy resistance
recently proposed by Monteith (1995b) has been
examined and compared to the more common
Jarvis type parameterizations. It appears that
Monteith’s formulation is not fundamentally new
and can be inferred from Jarvis’ one when the
stress function F4(Ψl), involving leaf water
potential, is expressed in the form of a hyperbolic
function (Eq.(9)). The perfect matching requires
also that stomata do not respond directly to air
humidity, but indirectly through transpiration and
leaf water potential. This means that the stress
function for air humidity F3(D) (in the Jarvis
formulation) equals unity.

The two parameters of Monteith’s
formulation can be expressed in terms of the
functions and parameters making up the Jarvis
model. The minimum stomatal resistance rsn

represents the canopy stomatal resistance when
the leaf water potential is equal to the soil water
potential (Ψl=Ψs and E=0), all other conditions
being equal; and the maximum rate of
transpiration Ex represents the flux of water
extracted from the soil when the leaf water
potential reaches its lowest possible value
(according to the parameterization used for F4): It
is the maximum flux of water which can be
extracted from the soil by the canopy.
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